

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (E.E.E.) II Year II-Semester Advanced Supplementary Examinations, June/July-2017

Digital Electronics and Logic Design

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (10 $\times 2=20$ Marks)

1. Implement two input XOR gate using NOR gates only.
2. Simplify the Boolean expression, $x^{1} y z+x^{1} y z^{1}+x y^{1} z^{1}+x y^{1} z$.
3. Briefly explain the characteristics of digital IC's.
4. Explain the function of a decoder.
5. Differentiate between serial adder and parallel adder.
6. Solve the following arithmetic sum in Excess-3.
i) $3453+2568$
ii) $2374+9435$
7. Briefly explain about the latch circuit.
8. What is a ring counter?
9. State the differences between a truth table and a state table.
10. List the applications of registers.

> Part-B $(5 \times 10=50$ Marks)
> (All bits carry equal marks)
11. a) Minimize the function using Karnaugh-Map and obtain minimal SOP and POS function. $f(A, B, C, D)=\pi(1,2,3,8,9,10,11,14)+\Sigma d(7,15)$.
b) Determine canonical POS form for the function $T(x, y, z)=x(\bar{y}+z)$.
12. a) Explain the TTL logic family with a neat diagram.
b) Explain how a decoder can be converted in to a Demultiplexer with relevant block diagrams and truth tables.
13. a) Design a full subtractor by using two half subtractors.
b) Design a combinational circuit for a 4-bit magnitude comparator.
14. a) Draw the schematic circuit of S-R-Flip-Flop with negative edge triggering using NAND gates and explain its operation with proper truth-table. Convert this flip-flop to J-K flipflop and explain its operation.
b) Design a synchronous counter using T flip flop for the given sequence $\mathrm{F}=\Sigma(0,2,5,3,6,4)$
15. a) Bring out the differences among a PAL and PLA.
b) Explain the concept of state and state diagram in the design of counters and also draw a state diagram for the given sequence of 10101.
16. a) Design a combinational circuit and draw a block diagram for a 4×16 decoder constructed with two 3×8 decoders.
b) Express the following functions in sum of min terms and product of max terms
i) $F(x, y, z)=(x y+z)(y+x z)$
ii) $F(x, y, z)=1$
17. Write short notes on any two of the following:
a) Shift register
b) BCD arithmetic
c) Sequence Detectors

